IPv6 Die Zukunft des Internets

Heinz Gnehm

16. November 2011

Inhalt

- Entwicklung
- Problem und Lösung
- Technik
 - □ Adressierung
 - □ Paketformat
- Übergang und Zukunft

Entwicklung [i]

- Die Netzwerkprotokolle von TCP/IP entstanden ab 1970 für das ARPANET
- TCP/IP sollte in der Lage sein, verschiedene Netzwerke zu verbinden und ein Netz von Netzen zu bilden (-> Internet)
- Es entstanden nacheinander TCP v1, TCP v2 sowie schliesslich die beiden separaten Protokolle TCP v3 und IP v3

Entwicklung [ii]

- IPv4 wurde 1981 in RFC 791 festgelegt
- Das Internet ist seither exponentiell gewachsen
- IPv4 stösst an seine Grenzen
 - Begrenzter Adressraum
 - □ Kompliziertes Routing
- IPv5 war als Erweiterung für Streaming gedacht, wurde aber nie realisiert

Entwicklung [iii]

- 1995 begann die IETF mit der Arbeit an IPv6 (ursprünglich IPng genannt)
- Das neue IP-Adressformat wurde 1998 in RFC 2373 festgelegt
- Im Dezember 1998 wurde mit RFC 2460 das Paketformat von IPv6 als Nachfolger von IPv4 vorgestellt

IPv4 - das Problem

- Begrenzter Adressraum
 - \square 4 x 8 Bit = 4 x 256 = 4 Milliarden IP-Adressen
 - □ Ineffiziente Einteilung in A-, B- und C-Adressen
 - □ «Network Address Translation (NAT)»
- Immer grössere Routingtabellen
- Komplizierte Konfiguration
- Keine «Quality of Service (QoS)»
- Keine eingebaute Sicherheit

IPv6 - die Lösung

- Viel grösserer Adressraum
 - ☐ global eindeutige Adressen
 - □ NAT ist nicht mehr nötig
- Einfacheres Paketformat
- Automatische Netzwerkkonfiguration
- Vorgeschriebene Sicherheit durch IPSec
- Erweiterbarkeit durch «Header Extensions»

Technik - TCP/IP

	OSI	TCP/IP		
7	Application	FTP		
6	Presentation	SMTP		
5	Session	HTTP		
4	Transport	TCP UDP		
3	Network	IP		
2	Data link			
1	Physical			

Technik - Adressierung [i]

- IPv4
 - □ 4 Blöcke zu je 8 Bits -> 32 Bits
 - □ 10.58.163.239
- IPv6
 - □ 8 Blöcke zu je 16 Bits -> 128 Bits
 - □ 2001:0000:5ef5:79fb:0cee:2067:f5cf:d7dd
 - = 2001:0:5ef5:79fb:cee:2067:f5cf:d7dd
 - □ fe80:0000:0000:0000:0cee:2067:f5cf:d7dd%12
 - = fe80::cee:2067:f5cf:d7dd%12

Technik - Adressierung [ii]

2xxx:xxxx:xxxx	xxxx	xxxx:xxxx:xxxx
Global Routing Prefix	Subnet ID	Interface Identifier

- Präfix mit 32 oder 48 Bits für den Netzwerkanbieter (Internet-Provider)
- Subnetzadressierung bis zu 64 Bits
- Die restlichen 64 Bits sind für das Endgerät reserviert

Technik - Paketformat IPv4

0	8	16		1	31
Version Length	Type of service	Total length			\Box
Identification		Flags	Fragment offset		
Time to live	Protocol	Header checksum			
Source address					
Destination address					
Options (+ padding)					

Technik - Paketformat IPv6 [i]

0		8		16	24	ļ	31
Version	Traffi	c class	Flow label				
Payload length		Next header	工	Hop limit			
Source address							
Destination address							

Technik - Paketformat IPv6 [ii]

- Ein IPv6-Header ist immer 40 Bytes lang
- Die Optionen werden mit «Next Header» als «Header Extensions» angehängt
 - □ Hop-by-Hop Options
 - □ Destination Options
 - □ Routing
 - □ Fragment
 - □ Authentication
 - □ Encapsulationg Security Payload

Der Übergang

- IPv4 und IPv6 werden noch lange nebeneinander bestehen bleiben
 - □ Interoperabilität ist deshalb ein wichtiger Faktor
- Dual Stack
 - ☐ Heute in allen modernen Betriebssystemen standardmässig vorhanden
- Tunneling (6to4, 6in4)

Neue Probleme

- IPv6-Adressen sind global eindeutig und können einem Anwender zugewiesen werden
 - Mit den «Privacy Extensions» kann die IPv6-Adresse regelmässig gewechselt und auch kryptographisch bestimmt werden
- Vom Internet abgeschottete private Netzwerke (NATs) sind in IPv6 nicht mehr vorgesehen

Zukunft [i]

- Die Umstellung auf IPv6 wird noch Jahre in Anspruch nehmen
- Länder in Asien und Ozeanien müssen aufgrund der fehlenden IPv4-Adressen früher auf IPv6 umstellen
- Europa wird seine IPv4-Adressen erst 2012 ausgeschöpft haben, Nord- und Südamerika sowie Afrika noch später

Zukunft [ii]

- Technische Massnahmen wie CGN, CDN und ALG halten IPv4 weiterhin am Leben
- Zurzeit wird weniger als 1 % des gesamten Internet-Verkehrs über IPv6 abgewickelt
- Aber 39 % der Backbone-Netze und 50 % der Endgeräte beherrschen bereits IPv6
- Google will im Juni 2012 einen zweiten IPv6-Tag durchführen